

ABRF 2018 Annual Meeting

Genomics Track

Research Group & Platinum Level Vendor Presentations

- Stuart Levine, Massachusetts Institute of Technology
- Justin J. Lemke, Promega Life Sciences
- John M. Ashton, University of Rochester
- Break
- Steve Siembieda, Advanced Analytical Technologies, Inc
- Christopher E. Mason, Weill Cornell Medicine
- Nancy Nabilisi, Roche

Shank you for sponsoring beverages!

Myrtle Beach Convention Center - Myrtle Beach, South Carolina

ABRF 2018 Annual Meeting

A MEETING OF THE ASSOCIATION OF BIOMOLECULAR RESOURCE FACILITIES

DSRG 2017

Comparison of small RNA chemistries

April 22-25, 2018

Myrtle Beach Convention Center - Myrtle Beach, SC

Small RNA

Small RNA

- Generally <100nt
- Often lost from standard RNA isolation methods
- Too short for random priming
- Not detected reproducibly in standard RNAseq

Small RNA Detection

NORTHERN BLOT

Small RNA Detection

NORTHERN BLOT

MICROARRAY

Small RNA Applications

- miRNA Detection
- other small RNAs (eg PIWI)
- tRNA regulation
- CLIP-SEQ
- Ribosomal Footprinting
- Sequential ligation for mRNA

BIAS IN SMALL RNA DETECTION

• GIVEN EQUIMOLAR SAMPLE All methods showed highly non-linear behavior

Bias was KIT SPECIFIC such that no absolute value could be correctly interpreted.

Bias is reproducible – running the same kit twice gives the same result

* RELATIVE values are robust, ABSOLUTE values are not

Linsen et al., Nature Methods 2009

NEW CHEMISTRIES

illumina®

Clontech TakaRa cellartis

nanoString

somagenics

Enabling complete transcriptome sequencing

Sequential Ligation: Illumina, Lexogen

Sequential Ligation:

Template Switching: Clontech(Takara), Diagenode

Circularization: Rubicon(Takara), Somagenics

Ligation + Array Hybridization: Nanostring

Step 0: miRtag sequence added to mature miRNA to add length and increase specificity in downstream rxns

GOALS OF smRNA STUDY

UNDERSTAND BIAS OF THE KITS

SIZE RESTRICTION OF KITS What comes down other than smRNA

The Samples

 $\frac{1}{2}$ ААААА

MUR: Miltenyi miRXplore Universal Reference

- 950 synthetic unmodified miRNAs
- Identical to human, mouse, rat
- 5'-phosphate moiety
- Equimolar ratios

MUR-D: Miltenyi miRXplore Universal Reference + DICER (-) Cell Line

- No native miRNA
- Otherwise "normal" RNA background
- ATCC[®] CRL-3221[™]

AAAAA AAAAA AAAAA AAAAA

HBR: Human Brain Reference

- Commonly used reference standard
- Unknown Catalog of miRNAs
- Unknown Molar ratio of miRNAs

EACH KIT TESTED AT 4 SITES – SAMPLES RUN IN TECHNICAL DUPLICATE n=264 samples

EACH KIT TESTED AT 4 SITES – SAMPLES RUN IN TECHNICAL DUPLICATE

VENDORS CONSULTED ABOUT RECOMMENDED INPUT AMOUNTS

 \circ $\,$ Call between vendor and sites before library preparation began

GOALS OF smRNA STUDY

UNDERSTAND BIAS OF THE KITS

SIZE RESTRICTION OF KITS What comes down other than smRNA

• EASE OF USE / TIME

REPRODUCIBILITY

Reported Time by Site to Complete a Library

Reported Level of Comfort using the the kit by Site

(1 least and 5 most comfortable)

FAILED LIBRARIES

CHEMISTRY	Number of Libraries	Dropped from Analysis	on us
Illumina	24	2 of 12	
Lexogen	24	3 of 12	
NEB	24		
BIOO	24		
TriLink	18		1 site returned late
Qiagen	24		
Rubicon (CLO-D)	18	4 of 9 (all MUR samples)	1 site returned late
Diagenode	24	3 of 12	
Clontech (CLO-S)	18	4 of 9	1 site returned late, 1 set MUR reps not returned due to failure
Somagenics	24		
Nanostring	24		

miRNA DETECTION

Number of miRNA detected in Brain Reference

CLO-S DIA QIA TRI LEX NEB Nano CLO-D SOM PEB ILMN

Kit

Amount 1 10 100 250 1000

Number of miRNA detected in Brain Reference

Percentage of miRNA for 5 categories (<10x down, 10-2x down, -2x - +2x, 2-10x up, >10x up)

Percentage of < 10x down Percentage of 10-2x down Percentage of within -2x and +2x Percentage of 2-10x up Percentage of >10x up

MURD

Violin plots for the miRNAs with log2 transformed CPM

Prep Type Template Switching Prep Type Template Switching Circularization Ligation Circularization Ligation 10 Log2(CPM) Log2(CPM) 0 -10 -10 -CLO-S 15 TRI 15 TRI 15 CLO-S 13 DIA 2 DIA 2 SOM 11 SOM 11 SOM 15 AIA DIA TRI-9 31 15 LEX LEX LEX LEX LEX LEX LEX EB NEB_6 NEB_6 NEB_6 MN 1 PEB OIA. 18,8, CLO-D_ CLO-D_ CLO-D_ CLO-D_ QIA AIC DIA S 8 SOM CLO-S-OLO Sample Sample

MUR_D

miRNA BIAS CONCLUSIONS

ALL kits show bias. NO kit showed even 50% of miRNAs within +/-2x in a native context.

- Circularization + polyA do reduce the bias more alone than in context of totalRNA
- BIOO shows slightly less bias than other ligation based methods
- Newer methods and BIOO chemistry show almost no jackpotting

RELATIVE DETECTION OF SMALL RNAs

Bias is reproducible – running the same kit twice gives the same result

* RELATIVE values are robust, ABSOLUTE values are not

Linsen et al., Nature Methods 2009

REPRODUCIBILITY OF BIAS

REPRODUCIBILITY OF BIAS

Kit-to-kit show very different results:

GOALS OF smRNA STUDY

UNDERSTAND BIAS OF THE KITS

• SIZE RESTRICTION OF KITS

- What comes down other than smRNA

Small RNA

Read length distribution for MUR samples

Read length distribution for MUR samples

Read length distribution for HBR samples

0 -

MUR Read mapping

MUR read origin

HBR Read mapping

HBR Read mapping

- Observe higher number of primer artifacts with newer chemistries
- Primer artifacts are observed in all chemistries
- Some chemistries may be unsuitable for longer small RNAs (eg Qiagen)

GOALS OF smRNA STUDY

UNDERSTAND BIAS OF THE KITS

SIZE RESTRICTION OF KITS What comes down other than smRNA

CONCERNS / CAVEATS / NEXT DIRECTIONS

Depends heavily on the Miltenyi controls

Understand the biases observed

Unmapped reads

Finish user information gathering

SUMMARY

The kits have very different strengths

- Discovery
- Evenness / lack of bias
- Low input
- Automation friendliness
- miRNA focus vs broad focus

SUMMARY II

- All chemistries do work to produce smRNA libraries
- Significant bias is present in all kits
 - Circularization, polyA and BIOO significantly reduce jackpotting.
- Correlation between input and de novo detection
- Circularization and PolyA preparations currently have lower fraction of small RNA reads.
 - Issues are largely technical and likely resolvable with additional protocol optimization

ACKNOWLEDGEMENTS

Experiments

Marie Adams* Zachary Herbert* Jamie Kersher* Yuriy Alekseyev* Jun Fan* Jessica Podnar* Yanping Zhang* Fred W. Kolling IV*

Leslie Grimmett Maura Berkeley **Gary Summerville** Shipra Gupta John Ashton Jen Grenier JJ Shen Xinkun Wang Anoja Perera Allison Peak Ken McGrath Gina Kuffel Tania Mesa Ling Xuei Tom Volkert

Reagents

Phil Sharp Kevin Thai

Analysis

Jyothi Thimmapuram* Megan Bowman* Shaojun Xie Vincent Butty

Corporate Support

Illumina Clontech/Takara Diagenode Lexogen Nanostring **NewEngand Biolabs** PerkinElmer Qiagen **Somagenics** Trilink

